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Abstract. In cellular automaton fluids, where binary collision laws admit reflections, the 
Stosszahl ansatz and the Boltzmann equation are no longer valid at low densities. This is 
proven for a class of Lorentz gas models, defined on cubic lattices, for which the diffusion 
coefficient is calculated from a self-consistent ring kinetic equation or effective medium 
theory. The calculated results are in excellent agreement with results from molecular 
dynamics simulations over the whole density interval. 

1. Introduction 

Intuitively one might expect that the Boltzmann equation gives a correct kinetic 
description of transport properties in lattice gases at sufficient dilution, at least for 
dimensionality d larger than two. However, this is in general not the case, as we found 
in recent computer simulations [l] .  The primary goal of this paper is to provide a 
theoretical explanation of these observations using kinetic theory. A secondary goal 
is to demonstrate that, also in the context of cellular automaton (CA) fluids, the 
systematic many-body methods developed in kinetic theory offer a means to understand 
and explicitly calculate non-equilibrium properties in cases where the simple probabilis- 
tic arguments of the Stosszahl ansatz fail completely at low densities and the Boltzmann 
equation breaks down. 

In existing simulations of cellular automaton fluids [2] the measured transport 
properties could be explained quantitatively-within acceptable error bars-by the 
Boltzmann equation. The agreement holds not only at low and high density (because 
of particle-hole symmetry), but surprisingly also at intermediate densities. I t  holds 
for viscosities [2] and tagged particle diffusion [3,4], both in CA fluids with deterministic 
and with stochastic collision dynamics. Similar quantitative agreement was found in 
lattice versions of the Lorentz gas [5,6]. Even the mode-coupling calculations by 
Kadanoff et a1 [ 7 ]  of the logarithmic size dependence of the viscosities in the two- 
dimensional FHp-lattice gases [ 21 do not yield substantial deviations from Boltzmann 
for the typical system sizes used in the simulations. 

The essential feature shared by these lattice gases is the absence of backscattering 
(reversal of velocities in binary collisions), at least at low densities where triple collisions 
are rare. (Triple collisions give ‘backscattering’ of third order in the density.) In a 
single-component CA fluid of indistinguishable unlabelled particles with momentum 
conserving collision rules (such as H P P  [8] or F H P  models [2]) backscattering is an ill 
defined concept. However, in tagged panicle systems and Lorentz gases, one can 
follow the complete trajectory of a tagged particle and investigate the lack or presence 

0305-4470/89/214611+22$02.50 @ 1989 IOP Publishing Ltd 461 1 



4612 M H Ernst and G A van Velzen 

of backscattering. In computer simulations on such models it appears that very large 
or very small deviations from the Boltzmann prediction occur, depending on the 
presence or absence of backscattering. 

To investigate this problem one needs to develop a systematic kinetic theory for 
CA fluids that enables one to calculate systematically higher-order density corrections 
to the Boltzmann equation. We further want to avoid the difficulties, inherent to 
two-dimensional fluid-type models, in which transport coefficients are proportional to 
the logarithm of the system size. In order to d o  so we have chosen a simple CA fluid, 
namely a lattice Lorentz gas, where the scatterers are fixed to the sites of a square 
lattice, We will use stochastic collision rules, defined through the three probabilities 
a, p, y with the normalisation ct + p + 2 y = 1 ,  where ct is the transmission probability, 
p the reflection or backscattering probability and y the deflection probability in an  
orthogonal direction. By varying these parameters one may possibly fine-tune to certain 
exceptional features of the lattice models; backscattering is one of them. This model 
has been studied before by Okamura et a/ [9] using the Boltzmann approximation of 
uncorrelated collisions. 

There exist many lattice Lorentz models with deterministic rules, only a few of 
which are mentioned. Binder [5,10] has performed computer simulations on a model 
where the moving particle turns right/left upon collision with a scatterer at even/odd 
times. At low densities there is qualitative agreement with the Boltzmann equation. 
Ruijgrok and  Cohen [6] performed simulations on a model, where a random fraction 
of sites is occupied by fixed deflecting mirrors, located at angle * ~ / 2  with equal 
probability. Simulations and  Boltzmann results agree quite well at all densities. There 
is no backscattering in these models [5,6].  

Another closely related Lorentz lattice gas was introduced by Gunn and Ortuiio 
[ 113 .  In their model a fraction of sites, P ( 0 )  = 1 - c, does not contain scatterers, whereas 
the remaining fractions P ( . r r / 2 ) ,  P ( - a / 2 )  and P ( n )  are filled by right-turning, left- 
turning and  backscatterers, respectively. 

It is well known in the literature [ 12-14] that the possibility of backscattering and  
retracing trajectories may create long-time memory effects that can change the (low- 
density) Boltzmann value of the diffusion coefficient by a substantial fraction. This is 
the case in a I D  gas of hard rods [12] or in a wind-tree model where tree corners are 
cut off [13]. Strong backscattering can even make the diffusion coefficient vanish, as 
is the case in the Ehrenfest wind-tree model with overlapping trees [ 141. Similar things 
happen in lattice gas models or cellular automaton fluids. 

Kinetic theory is the standard tool to investigate such problems. As the first step 
one has to estimate the relative importance of different collision sequences in the 
coupled limit of small density of scatterers c and of large time r,  where t is typically 
of the order of the mean free time, t,,,,-- l / c .  The methods for estimating c and  t 
dependence of the phase space associated with uncorrelated collisions, rings, repeated 
and  nested rings, orbiting events, non-ring sequences, etc, is exactly the same as used 
by Hauge and  Cohen [ 141 in their analysis of Ehrenfest’s wind-tree model. We simply 
summarise the results in figure 1 in order to show which diagrams have to be resummed 
in a systematic low density theory of C(1) and  O(c) respectively. 

In models without backscattering the only O( 1 )  contributions come from uncorre- 
lated collisions, summed by the Boltzmann equation. However, in models with back- 
scattering one not only has to sum uncorrelated collisions, but also rings and repeated 
rings in order to be consistent to lowest order in the density. This shows the breakdown 
of the Boltzmann equation for such models. 
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I-?-- 
Uncorrelated 

(Repeated1 r i n g ( y - s s )  

Nested [repeated) ring 
( Y - W  

Simple ring ( n  - 8s)  

Nested r ing ( n - a s )  

Orbiting 

Figure 1. Examples of collision sequences that contribute to order 1 (left) or to order c 
(right). 

In this paper we develop a method that, for lattice gases with backscattering, resums 
in one stroke a large class of O(1)-diagrams. The method is essentially an effective 
medium approach. 

The paper is organised as follows: the model is defined in § 2, where also the 
equation for the time evolution of the probability distribution is constructed. Time 
correlation functions and transport coefficients are introduced in § 3 and calculated 
in 0 4 in the Boltzmann approximation. Section 5 contains the effective medium theory, 
which is solved numerically and compared with computer simulations in 0 6. The 
analytic solution at small density of scatterers is studied in § 7, while § 8 treats low- 
and high-density corrections to the diffusion coefficient. Conclusions and results are 
summarised in § 9 and technical details are given in two appendices. 

2. Chapman-Kolmogorov equation 

We consider a Lorentz gas on a d-dimensional cubic lattice [ l ,  101 with N sites, unit 
lattice distance and a fraction c of sites-chosen at random-occupied by scatterers. 
A particle moves at times t = 0, 1,2,  . . . with unit speed from site to site. Its trajectories 
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are straight lines until the particle hits a scatterer, where it will be scattered into one 
of the lattice directions with probabilities depending on the incident velocities. 

Let p (  n, i, t )  be the probability in a given configuration of scatterers that the moving 
particle is at site n and arrives there with ‘velocity’ i (i.e. comes from lattice site n - e , ) .  
Here velocity variables i,j ,  . . .  take the values i , j  = 1,2, . . .  , 2 d  mod(2d) and refer 
respectively to the lattice directions e , ,  e, ,  . . . .  ed ,  e c x ,  e - , ,  . . . .  e c d .  The microscopic 
or fluctuating density of scatterers is described by the random variable c ,  taking on 
the values 

1 with probability c .,=io with probability 1 - c. 

The distribution function for the moving particle is ( p ( n ,  i, t ) ) ,  where (. . .) denotes an 
average over the configuration of scatterers, i.e. an average over all c, with weight 
function (2.1). 

If all c, = 1, the moving particle performs a random walk with correlated jumps 
[ 15,9]. For c < 1 the model represents a lattice version of the Lorentz gas. The 
scattering laws are further specified by introducing a transmission probability a, a 
reflection probability p and a deflection probability y for any orthogonal direction 
with normalisation 

a + P + 2 ( d  - l ) y =  1. (2.2) 
We write this in the form of a 2d x 2d transition matrix 

w, = 

a y y  . . .  p r y .  . .  
y a y . .  . y p y . .  . 
yya  . . .  yyp  . . .  

p y y . .  . a y y . .  . 
ypy  . . .  y a y .  . .  
yyp  . . .  y y a  . . .  

. . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  

(2.3) 

with 

Chapman-Kolmogorov ( C K )  equation for the probability distribution [ 161, namely 

W,, = 2! W,, = 1. 
If all sites are occupied by scatterers, i.e. all c, = 1, one simply constructs the 

p ( n + e , ,  i, t + l ) = C  W,p(n, j ,  t )  
J 

= a p ( n ,  i, t ) + p p ( n ,  -i, t ) + y  C p ( n , j ,  t )  (2.4a) 
, # * I  

or in matrix notation 

p (  t + 1) = s-’ Wp( t ) .  (2.4b) 
Here, the probability distribution p (  1 )  is considered as a 2dN-dimensional vector with 
labels ( n ,  i ) ,  the ‘free streaming operator’ S,  shifting the particle with phase ( n ,  i )  to 
( n  + e , ,  i), is a 2 d N  x 2dN matrix: 

Snt,, = S n m S ,  = G n + e , , m S y  ( 2 . 5 )  

Wni.mj = S n m  Wtj* (2.6) 

and the transition matrix W is 
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If a site does not contain a scatterer, the particle continues in its original direction. 
Thus, the C K  equation for the probability distribution p (  n, i, 1) for our Lorentz model 
in a given realisation of scatterers {c,,} is 

or, in matrix form and vector notation, 

p ( t +  1) = S-'(l+ CT)p( r )  = (1 - L ) p (  t )  (2.76) 

with 

T =  W - 1  

L = 1 - ~ - ' ( i  + C T )  

where T is the collision operator. The matrix of density fluctuations C is diagonal in 
the coordinate representation, Cnl,,, = c,,G,,S,. We note that the steady-state solution 
of (2.7) is uniform, namely p (  n, i, CO) = constant = (2dN)- ' .  

There is a subtlety in the recursion relation (2.76) regarding the initial condition. 
It is imposed by prescription of p (  n, i, O+), where p (  n, i, 0+) specifies the outgoing 
velocity at time r = O+. Consequently p (  n, i, 1) = p (  n - e , ,  i, 0) or p (  1) = S - ' p ( O )  (recall 
that for t > 0, p (  n, i, t )  gives the incoming velocities). Equation (2.76) applies for t > 2 
and has the formal solution 

p ( r ) =  P ( t ) P ( O )  

= [Si( 1 + CT)] ' - 'S - 'p (O)  = (1 - L ) ' - ' S - ' p ( O ) .  (2.9) 

Equation (2.7) applies also to the conditional probability P (  t ) ,  or explicitly P, , , , , (  t ) ,  
with initial condition P ( 0 )  = 1 or P,,,,(O) = 6,,,,6,. Regarding notation it will prove 
convenient to use a separate vector and matrix notation for 2d-vectors and 2d x 2d 
matrices in the velocity labels i , j  only, i, j = 1,2, .  . . ,2d.  In this notation ( i , j )  labels 
are suppressed and the explicit dependence on position variables is indicated by 
subscripts. For instance, P,,,,(t) is a matrix with components (P,, , , , ( t)) , ,  = P,, l ,mJ(t) .  We 
will further use diagonal matrices of the form Vu (a  = x, y ,  2 , .  . . , d ) ,  defined as 
(Va),, = ( e l ) u 6 8 , ,  where ( e , ) ,  is the a t h  Cartesian component of the ith lattice vector e , .  
Furthermore, exp(iqV) = exp(Z, iq,Vu) and Snm( V) = 6,,+",, (see (2.5)), where 
( A V ) ) ,  = f ( e , ) S , .  

The 2d-vectors will be denoted by kets and we can construct a basis from Il), I V,) 
and 1 Vt) with a = x, y ,  z, . . . , d, where (Il)), = 1 and I Vh) = Vkll). In addition, an inner 
product is introduced as 

For some further properties of cubic symmetric matrices and vectors we refer to 
appendix 1. 

We further note that the matrix Snm(  V) is translationally invariant, as it depends 
only on ( n  - m); however, the evolution operator on the R H S  of (2.76), i.e. 

(2.11) L n m  = 6 n m  - (S-')nm(l+ cm TI 
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is not translationally invariant, because it depends explicitly on m. Let A,,, be a 
translationally invariant matrix; hence it is diagonal in Fourier representation with 
diagonal elements 

a( q )  = e-lq"A,,,, . (2.12) 
f l  

The inverse transformation is 

(2.13) 

The q are reciprocal lattice vectors, located in the first Brillouin zone ( I B Z ) .  In the 
thermodynamic limit ( N  + a), the q sum may be replaced by an integral. The integra- 
tion symbol stands for 

(2.14) 

3. Correlation functions 

The quantities of main interest are the response function, the velocity autocorrelation 
function (VACF) and the diffusion coefficient. They can all be expressed in terms of 
the two-time probability distribution in the steady state: 

(3.1) 

Here the initial distribution p ( n ,  i, 0) = (2dNI-l  is taken to be the steady-state solution. 
The probability for a displacement ( n  - m )  may be obtained from (3.1) by summing 
over all i, j: 

(p(n,  i, t ;  m,j,  0 ) )  = (2dN)-'(pfl,,,,,,(t)). 

(3.2) 

The bracket expression on the RHS of (3.2) also implies an  average (. . .) over the 
random variables {c,}. Hence it depends only on ( n  - m )  because of translational 
invariance. The Fourier transform or  the intermediate scattering function generates 
the moments of displacement. Similarly for the velocity autocorrelation function 
(VACF): 

where cp(0) = l/d. Then the diffusion coefficient is given by the following time correla- 
tion expression [ 5 ,  17-19]: 

The basic quantity in which all correlation functions can be expressed is the Laplace 
transform of (P( t ) ) ,  referred to as the propagator. It is defined as a 2 d N  x 2dN matrix 

X 

r ( z )  = (1 + Z ) - I ( P ( ~ ) )  
1 = I  

=((Z+L)-IS-I)=([( l+Z)S-l-CT]- ' ) .  (3.5) 
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The second equality was obtained with the help of (2.8). The dynamic structure 
function or response function 9 ( q ,  z)  is the Fourier-Laplace transform of (3.2). I t  
can be expressed in terms of the propagator (3.5) as 

where the Fourier representation (2.12) of r has been used. Similarly, the Laplace 
transform of the VACF becomes, on account of (3.2) and (3.5): 

The present analysis of the probability distribution and time correlation functions 
shows that the correlated random walk on a disordered lattice can be formulated as 
a standard kinetic theory problem for a Lorentz pas. In the next sections we exploit 
these similarities by using the Boltzmann equation and the self-consistent ring equation 
to calculate correlation functions and transport properties. 

4. The Boltzmann equation 

What happens at low concentration of scatterers? If all c, = 0 in (2.1 l ) ,  then L = 1 - S-'  
refers to free streaming. In the zero-density limit time correlations do not decay; the 
mean square displacement grows like f 2  and diffusion does not exist. However, if c 
is small but finite, then diffusive motion is observed for times t >> c-I, where t m f -  c-'  
is the mean free time between collisions, and one expects the probability distribution 
( p (  n, i, t ) )  of the moving particle to be described by a Boltzmann-type equation. In 
such an equation the time evolution is governed by the dynamics of the encounters of 
the moving particle with different scatterers. Only uncorrelated collisions are taken 
into account and all correlated collisions (returns, ring collisions) are being neglected. 
Thus, the average over the configurations of scatterers can simply be carried out by 
replacing all c, by their average (c,) = c or the matrix L in (2.8) and (2.1 1 )  by Po= (L). 
We adopt the convention of a superscript o to indicate quantities in the Boltzmann 
approximation. The equation of motion, resulting from this approximation is obtained 
from ( 2 . 7 ~ )  by replacing c, by c, and reduces to the Chapman-Kolmogorov equation 
(2.40) for a random walk on a uniform lattice with a, p and y replaced by a'= 
1 - c( 1 - a), p'  = cp and y' = cy, respectively. There exists extensive literature [ 15,9] 
on this subject, where in particular the results for the forward jump model ( p ' =  7') 
[15,20] and for the general model (a' f p ' #  y ' )  [9,21] are most useful in our case. 

In the next part of this section we calculate a few results in the Boltzmann 
approximation. A discussion of the relevance of these results is postponed till the last 
section. 

Since the average matrix 2 ' Z m  =(Lnm)  in (2.11) is translationally invariant, it is 
diagonalised by Fourier transformation with 

(4.1) 

where s-l( q )  = exp( -iqV) is the Fourier transform of Si,!,( V) = Sn-v,m.  The propagator 
of the moving particle (3.5) becomes in the Boltzmann approximation: 

g0(q) = C e-'qn2z, = 1 - e-'qV[l + CT] 
n 

&(q,  z ) = ( z + $ O ( q ) ) - ' e - l q V = [ ( l + z ) e l ~ V - l - c ~ ~ - ' .  (4.2) 
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The calculation of b0(q, z )  is similar to that of the Green function in the theory 
of lattice dynamics of harmonic crystals [22]. The study of the spectrum of go(q) is 
similar to that of the acoustical (here diffusive) and optical (here kinetic) branches of 
phonon (here relaxation) spectra, where the symmetries of the crystallographic point 
groups lead to important simplifications. 

The simplifications due to cubic symmetry (see appendix 1) are most drastic when 
calculating quantities that only involve the long-wavelength limit of (4.1) and (4.2), 
in which case eigenvalues (A1.4) and (A1.5) and eigenfunctions ( A l . l )  and (A1.2) are 
known explicitly. Take, for instance, the VACF where 

qo( t )  = (V,l( 1 - p ( 0 ) ) ' I  V,) = d- ' (  1 - A y ) ' .  (4.3) 

The matrix p ( 0 )  = -cT = c( 1 - W) has the general cubic symmetric form discussed 
in appendix 1, with eigenvalues and eigenvectors given by (A1.4). Hence IVY) is an 
eigenvector of $ " ( O )  with eigenvalue A:, given by 

A:= -ct ,= C(1- wl) = c( l  - - (Y + p )  (4.4) 

where w ,  and t ,  are the I = 1 eigenvalues of W in (2.3) and T = W - 1. Summing (4.4) 
up to some finite limit yields a time-dependent diffusion coefficient; summing once 
more over t yields the detailed time dependence of the mean square displacement. 
The diffusion coefficient in the Boltzmann approximation follows from (3.4) and (4.3) 
as 

2 - c( 1 - Ly + p >  
Do= (dA:)-' - (2d)- '  = 

2dc(l - ( y i p )  ' (4.5) 

Suppose that the Boltzmann approximation indeed represents the correct low- 
density behaviour (which is not always the case; see § 7);  then we see that the subtracted 
term (2d)- '  in (4.5) is of relative O(c). There exist of course many more terms coming 
e.g. from ring and orbiting collisions [ 11 that also contribute to cD( c)  terms of O( c). 
In a systematic low-density theory the term (2d)- '  in (4.5) should therefore be neglected. 

If the lattice is completely filled with scatterers (all c, = 1) then L = 1 - S-' W and 
the Lorentz gas reduces to the random walk (2.4) on a uniform lattice. The diffusion 
coefficient is known exactly (equation (4.5) with c = 1) from the theory of correlated 
random walks [ 151 on uniform lattices: 

(4.6) 

In an almost filled lattice, i.e. at a low concentration p = 1 - c of 'holes', the O( p )  
terms in (4.5) do not account for all D ( p )  corrections, as will be discussed in 0 8. 

5. Effective medium approximation (EMA) 

The Boltzmann equation sums all uncorrelated collision sequences of the moving 
particle with fixed scatterers, i.e. the particle visits each scatterer at most once. In a 
systematic low-density theory one has to resum all O( 1) collision events (see figure 1). 
For the general case of collisions with backscattering this involves not only uncorrelated 
collisions but, for instance, also rings, repeated and nested rings and orbiting events. 
In a single or repeated ring collision the particle returns respectively once or repeatedly 
to the same scatterer. In between two successive returns to the same scatterer the 
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particle collides with a set of scatterers to which it will never return afterwards. In  
the EMA that we will develop here, which is very similar to the self-consistent ring 
kinetic equations, all intermediate collision sequences are restricted to uncorrelated 
collisions and to nested and repeated ring collisions. 

We try to perform the summation of these collisions by replacing the random matrix 
L in (3 .5)  by an effective sure matrix 2 for a uniform lattice, where the form of U 
has to be determined. In the Boltzmann approximation the random matrix L was 
replaced by Uo = ( L )  or, equivalently, the random matrix C was replaced by (C) = c. 
In the EMA equation we try to represent the sum of all repeated ring collisions in (3 .5)  
by a sure matrix U( z )  with the same structure as ( L ) ,  in which the collision matrix is 
replaced by the effective T' (z ) .  This yields for the propagator ( 3 . 5 )  in EMA: 

G ( z )  = ( z +  2 ( z ) ) - ' S - '  = [(1+ z )S  - 1 - cT'(z)]- ' .  (5.1) 

The procedure is completely the same as adding in the expressions for Green functions 
and correlation functions (3 .5)  a counterterm T ' ( z )  - T, to the Boltzmann ( L ) .  The 
method followed here is similar to Webman's derivation [ 2 3 ]  of the effective medium 
approximation for random resistor networks and hopping models. Self-consistency in 
the sense of E M A  requires the counterterm to be chosen such that all ring and repeated 
and nested ring terms vanish identically in a perturbation expansion of the propagator 
r = ( ( z  + L) - 'S - ' )  in powers of 

(5 .2)  

Once the matrix T'( z )  of the effective medium is determined from this self-consistency 
condition, calculation of response function, VACF and diffusion coefficient in terms of 
T' (z )  is the same as in the Boltzmann equation. The final inverse Laplace transform, 
back to the time variable, will of course be very complicated. 

We quote for later reference the EMA value of the diffusion coefficient, which is 
analogous to (4.3)-(4.5) 

6 2  = 2 -  L = S - ' [ C T -  cT'(z)] = s-" 

(5 .3)  

Here A, = -ct;, where r :  ( l =  1 , 2 )  is the 1 eigenvalue of the matrix T'(z = 0 )  (see 
appendix 1). 

We continue by expanding the resolvent ( z +  L ) - ' S - '  in ( 3 . 5 )  in powers of 6T using 
(5.2). This yields 

[ ( Z + L ) - ' S - ' ] , ~ =  G,,+X G,,GT,G,,+ 1 G,m6TmGmm~6Tm~Gm~o+. . . (5.4) 
m mm' 

and the matrix 6T in (5 .2)  is diagonal in this representation. The labels m, m' on ST 
may refer to the same site or to different sites. We sum all intermediate sequences in 
(5 .3)  referring to the same site (repeated rings) by introducing a 0 matrix: 

0, ST, + GT,,G,oST, + ST,Go,6T,Gw8Tn +. . . = ST,,(l- RST,)-' (5 .5 )  

with R = G,, = Goo because of translational invariance. Also note that ST, depends 
only on the single random variable c,. 

Combination of (5.2) and (5.4) yields for the propagator ( 3 . 5 )  in coordinate 
representation: 

rno= G,,+X G,m(Om)G,o+ 1' G,,(OmGmm~Om~)G,~o+. . . ( 5 . 6 )  
m mm' 
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with the restriction that the site labels on two consecutive 0, be different. As discussed 
below (5.1), self-consistency imposes the 2d x 2d matrix condition for the effective 
medium [23]: 

(0,) = ( 6T,/ ( 1 - R6 T, )) = 0. (5.7) 

Recall that ST, = c,T- cT'(z)  on account of (5 .2 ) .  This condition determines the 
collision matrix T'( z )  of the effective medium. With the help of the relation (f( c , ) )  = 
cf( 1) + (1 - c)f(O) for the quenched average, condition (5 .7 )  can be evaluated to yield 
the E M A  condition for self-consistency of the effective collision operator. After some 
algebra one finds 

T'= T +  TRT'-cT'RT' ( 5 . 8 )  

where we accounted for possible non-commutability of T, T' and R. For completeness 
and later reference the ring integral R is expressed using (2.13) in the Fourier transform 
of the propagator: 

R ( Z ) = G ~ ~ ( Z ) = [ ~  ~ ( q , z ) = ~ q [ ( l + z ) e ~ q v - l - c T e ( z ) ] ~ ' .  (5.9) 

The coupled set of matrix equations ( 5 . 8 ) ,  (5.9) determines the effective collision 
operator T'( z )  and will be referred to as the EMA equations. Non-vanishing corrections 
to the E M A  involve terms that contain a t  least two scatterers and at least two 0 referring 
to the same site. Expressed in the EMA propagator and the first non-vanishing correction 
to EMA, an expansion of the exact propagator is written as 

( ( z +  L) - 'S - ' )no  = Gn0+ G,,(O,Gmm,O,,G,~,OmG,~,Om~)G,~o+. . . . (5.10) 
m f m '  

6. Transition rates of the effective medium 

To analyse the E M A  equations (5 .7)  we observe that T' (z )  and R ( z )  are cubic symmetric 
matrices of the form (2.3) (see also (A1.4)), containing for general d-values three 
independent elements with known eigenvalues and eigenvectors (A1.4). However, 
among the elements of T ' ( z )  there are only two independent ones by conservation of 
probability, i.e. T'( z) i  1) = 0 or Ej T;( z )  = 0,  as follows from (5.8) and TI 1) = 0. There- 
fore the E M A  matrix condition (5 .7)  imposes two independent conditions. This is an 
extension of the standard E M A  as used in the theory of random resistor networks [24] 
where the effective medium approximation introduces only a single effective transition 
rate. 

For calculating diffusion coefficients it is sufficient to study only the limit z + 0 of 
(5.1). We will restrict ourselves to this limit in actual calculations. Denoting the 
eigenvalues of R, T and T' by r,, t ,  and t? ( 1  = 0, 1 ,2)  respectively, we obtain the 
following relation between the eigenvalues: 

(6.1) 

Before solving this equation it is convenient to express (6.1) in terms of the relaxation 
constants, defined as 

hi = -c t :  T/ = 1 - w, = - t /  I =  1,2. ( 6 . 2 ~ )  

17 = t ,  + r,t& - cr,( t:)'. 
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We have already seen that Tell) = 0 or A. = 0. We further express T,  in terms of the 
primary parameters a, p, y using the expressions (A1.4) for the eigenvalues w, of the 
cubic symmetric matrix W in (2.3). This yields: 

70 = 0 

7 1 = l - a + p  = 2 p + 2 y  (6.2b) 

7, = 1 - a  - p + 2 y  = 4y. 

~ , = ( 2 r , ) - ' [ 1 + r , ~ , - [ ( 1 + r ~ ~ ~ ) ~ - 4 c r ~ ~ , ] ~ ' ~ ] .  (6.3) 

The EMA equation (6.1) reduces then to rA'- ( 1  + rT)h  + CT = 0 with solution 

The unknown relaxation constants A ,  of the effective medium depend on the eigenvalues 
rl of the ring matrix R in (5.9), in which the effective collision operator T' appears 
itself again, or equivalently its eigenvalues A I  and A 2 .  So rl = r / ( A l ,  A 2 ) ,  which in 
combination with (6.3) yields two coupled equations from which A I  and  A,  can be 
solved. 

As the next step we calculate rl = r , ( A  I ,  A ? ) .  As the right and left eigenvectors are 
known (see (A1.3)-(A1.5)), the eigenvalues can be expressed as 

r , =  (J/xlRl$/x) = (&ylR141,~ = 1 (JlrlAl) (6.4) 

where IA,) satisfies ( I  = 1 ,2 )  

{e'q" - 1 - cT'}lA,) = I&). (6.5) 
From here on we restrict ourselves to the two-dimensional case. For details on the 
calculation of the eigenvalues r, we refer to appendix 2 .  The results are 

(6.7) 

with S 2 =  F / ( E  - F ) .  (See also (A2.5) and (A2.10).) 
Summarising our E M A  analysis, (6.6)-(6.8) give the eigenvalues r/ ( 1  = 1 ,2 )  of the 

ring matrix R as an  explicit function r , ( A l ,  A,) of the (unknown) eigenvalues A,  = -ct: 
of the EMA collision matrix T'. The E M A  equation (6.3) gives an  independent expression 
for A ,  as a function of r , .  Combination of (6.6) and (6.3) yields a set of coupled 
transcendental equations from which A I  or, equivalently, r, can be solved. Equations 
(6.3) and (6.6) are equivalent to the E M A  equations (5.8) and (5.9). Once the A, are 
determined, (5 .3 )  gives the EMA value of the diffusion coefficient D = (2A1)-' - f  as a 
function of the density of scatterers c. 
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1 g =  - 

c 

Figure 2. Results for the diffusion coefficient for some typical sets of model parameters. 
Full lines represent E M A  results, broken lines Boltzmann approximation results. Simula- 
tions are indicated by their error bars only. 

We have numerically solved the E M A  equations for several values of the model 
parameters a, p and y and determined the diffusion coefficient D ( c )  as a function of 
the density c. The results are shown in figure 2 as full lines. We have also plotted (as 
broken lines) the diffusion coefficient cD"(c)  in (4.5), as calculated from the uncorre- 
lated collision (Boltzmann) approximation. The plot shows that EMA and Boltzmann 
results effectively coincide for a typical case without backscattering ( y = i), but it also 
shows that in models with backscattering there exist large differences between the E M A  

and the Boltzmann values, particularly at low densities. 
To test the predictions of the EMA we have performed computer simulations for 

the present Lorentz model [l]. The measured diffusion coefficients are also shown in 
figure 2.  The results obtained from simulations are in excellent agreement with the 
EMA results, and strongly deviate from the predictions of the Boltzmann equation in 
cases with backscattering. In  order to understand these deviations we will study the 
E M A  equations analytically at low and high densities. This will be done in the 
subsequent sections. 

7. Breakdown of the Boltzmann equation 

In this section we analyse the E M A  equations in the limit as c + 0. Here (6.3) reduces 
to 

A /  = cT1/  (1 + r/T/) c + o  ( 7 . 1 )  

D = ( ~ C T ~ ) - ~ ( ~ + ~ ~ T ~ )  c + o  ( 7 . 2 )  

and the corresponding diffusion coefficient (5 .3)  is, to leading order, given by 
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where the c dependence of rl still has to be determined. We therefore analyse the ring 
eigenvalues r, in (6 .6 )  for c + 0. As A I  is proportional to c, the dominant low-density 
contribution of the coefficients in (6.7) is A - E - B(  l ) ,  B - O( c )  and F - C( c'). The 
parameter 6 in (6.8) is @ ( c )  with 6 = (A lh2 /8 )" '  = C(c), and the coefficient (6 .8 )  reduces 
to J = 26 + O( c ) .  Therefore, the resulting expressions (6 .6 )  for the ring eigenvalues rl 
simplify to 

1 -  --L+L 2 2Y - 1  2 -  --!+L 2 2Y y 2  = 2 A l / A z  (7 .3 )  

where terms of C(c) have been neglected. Calculating y from ( 7 . 1 )  and inserting ( 7 . 3 )  
gives a closed quadratic equation for y with solution 

y = ( 2 a ) - ' { 1 + [ 1 + 8 a b ] ' ' 2 }  ( 7 . 4 a )  

with 

a = 2 / ~ ,  - 1 = ( C Y  + - y ) / ( P  + y )  b =2/72-  1 = ( a  + p ) / 2 y  (7 .4b )  

on account of (6 .26 ) .  Combining these results with (7 .2)  yields the effective medium 
approximation ( E M A )  or self-consistent repeated ring equation to lowest order in the 
concentration. 

There is a peculiar cancellation of the leading terms of C( 1 )  in the ring eigenvalues 
rl in (7 .3 )  if the reflection probability is vanishing ( p  = O ) .  This cancellation comes 
about because at low densities A l  = CT[ = 21yc ( I  = 1 , 2 )  for p = 0, on account of (6 .2 ) .  
Consequently, (7 .3 )  shows that y = 1 + O( c )  and rl - O( c ) .  The &fusion coeficient to 
lowest order is given by the Boltzmann value D " - ( 2 m I ) - '  on account of (7 .2 ) .  In 
figure 2 the diffusion coefficient is plotted as a function of the density of scatterers. 
Only one typical case with non-vanishing reflection probability ( a  = 0, p = 0,  y = 4) is 
shown in this plot. In general, for cases without backscattering, the Boltzmann value, 
cDo, determines the intercept of c D ( c )  with the vertical axis. In  the next section the 
slope at c = 0 will be calculated. 

Next we consider collisions with backscattering, where p # 0. Here y # 1 for small 
c and  the ring eigenvalues rl in (7 .3)  are of G( 1 )  as c + 0. Consequently the low-density 
limit of the EMA diffusion coefficient in ( 7 . 2 ) ,  D = Do( 1 + r l  T , ) ,  differs drastically from 
the Boltzmann prediction! The value of the correction factor DID" can be calculated 
from ( 7 . 3 )  and (7 .4 )  and is listed in table 1 for some typical cases. We want to stress 
that this is a surprising result because it shows the breakdown of the Boltzmann 
equation as a correct low-density kinetic theory in a two-dimensional system. 

For models with backscattering we also calculate the eigenvalues ry of the simple 
ring matrix R", which is defined by (5.9) with T' replaced by T. Then (7 .3 )  yields for 

Table 1. Comparison of Boltzmann value D", simple ring result D ,  and E M A  result D 
for the diffusion constant, in some typical cases with non-vanishing reflection probabilities 

cD" ( c  -P 0 )  Dd D" (C -t 0 )  D /  D" ( c  -t 0 )  
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the relevant ring eigenvalue 

(7.5) 

to dominant order in c, and  for the corresponding diffusion coefficient: 
DR = D"( 1 + r y T l ) .  (7.6) 

The values of this correction factor are also listed in table 1 for some typical values. 
Note that it lies roughly halfway between the Boltzmann value and  the E M A  value. 

8. High- and low-density corrections for diffusion 

In  this section we consider linear corrections to the diffusion coefficient at high and  
low densities of scatterers. The model at c = 1 describes a lattice uniformly filled with 
scatterers. The present Lorentz model (2.7) reduces to the standard random walk with 
correlated jumps (2.4) for which the diffusion coefficient is known exactly. It was given 
already in (4.6) and its values appear in figure 2 at c = 1. At a high concentration of 
scatterers ( p  = 1 - c small) the E M A  equations (6.3) and (6.6) can b.: solved perturba- 
tively, i.e. 

A,  = 7/(1 - p / ( l  - vl)) P + O  (8.1) 

D = ( 2 T 1 ) - I ( 1  + p / c  1 - T I T , ) )  - a  p + o .  (8.2) 

and  the corresponding diffusion coefficient (5.3) is 

Here the ring eigenvalues rl should be evaluated at c = 1. This can be simply achieved 
by replacing in (6.6)-(6.8) all A /  by T/ on account of (8.1), where the T/ are given in 
(6.26) in terms of the parameters a, p and y.  Equation (8.2) with r l ( A l ,  A,) in (6.6) 
evaluated at A /  = cq  determines the dominant high-density correction of f!7( p )  = C( 1 - c) 
to the diffusion coefficient (4.6) for a random walker on a lattice, almost completely 
filled with scatterers. In  figure 2 these results determine the slopes of cD(c)  at c = 1. 
The structure of (8.1) at a low concentration p of holes is in complete agreement with 
the general results for hopping models on random lattices with a low concentration 
of impurities [25]. The coefficient of p in A /  has the form - ~ / / ( l - ~ / r ~ ) =  
- ~ / ( 1 +  Tirl  + T?r: + . . .), summing first encounter, first return, second return . . , of the 
R W  to the same impurity (being a hole in this case). 

Next we consider low densities, where the E M A  equations (6.3) and  (6.6) can again 
be solved perturbatively. In order to d o  so, the approximation to (6.3) has to include 
terms of relative G(c). 

One has to distinguish cases without backscattering ( p  = 0) and  with backscattering 
( p  f 0). In  the latter case we will not calculate terms of relative C(c),  although this 
can be done in a straightforward manner. In the former case the contributions to A /  
and  D of relative G ( c )  will be determined explicitly. 

The calculations are lengthy, but straightforward. To start we only keep subleading 
terms in (6.6) that are of relative C(A) and we use J ( 6 )  = 2 6 ( 1 - 2 6 / ~ )  for 6 small. 
The expressions for the ring values become 

(8.3) 

r - - -+-(-) '"[ l - - - (T)  1 1 A 2  2 A l A 2  + $ , i l - a A 2  
2 2 2Al 1 -  

r z = - - + -  2 1 2 1 ('A1)"[ - A 2  I - -  :(At2)1'2 - 1 . 
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For the case of interest here ( p  = 0), we recall from ii 7 that the density independent 
terms in ( 8 . 3 )  cancel. So r , -  C(c).  The E M A  equation ( 6 . 3 )  yields therefore A , =  
cT1( 1 - r l q )  with T,  = 21yc, consistently to the same order in the density. This yields in 
combination with ( 8 . 3 ) :  

- -1 z y r l  - yr ,  + (j-:) yc 

1 1  
2 -  --1 2Y l + Y r l t ( i - ; ) Y C  

with solution 

( 8 . 4 )  

( 8 . 5 )  

For Lorentz models without backscattering ( p  = 0) the analytic result for the E M A  

diffusion coefficient ( 5 . 3 ) ,  to relative O( c )  included, is 

D = ( 1  + 2 y r l ) / ( 4 c y )  - a .  ( 8 . 6 )  

This expression describes the slope and intercept of c D (  c)  at c = 0 for cases with p = 0 
(see figure 2 for the y =$  case). It is interesting to observe that r ,  = 0 for y = i ,  i.e. in 
Lorentz lattice models where the moving particle, upon collision with a scatterer, is 
deflected over an angle *t.rr/2. Therefore, in models with y = i, the diffusion eigenvalue 
r ,  vanishes at low density up  to terms of C( c )  included, and the E M A  diffusion coefficient 
( 5 . 3 )  is given by the Boltzmann approximation ( 4 . 5 ) ,  D = (2c)-'  -:. Numerical solution 
of the E M A  equations shows, in fact, that r l  = 0 and r2 < Ofor  all densities, but we could 
not verify this analytically. 

This is an  interesting result. Consider the cubic symmetric ring matrix R in ( 5 . 9 ) .  
Its eigenvalue r ,  = R I ,  - R I ,  = 0 ,  on account of ( A 1 . 4 ) .  We recall that R,, = (Go,),, is 
the Laplace transform at z = O  (see ( 3 . 5 )  and ( 5 . 1 ) )  of the matrix of conditional 
probabilities (Po,,o,( t ) ) .  Hence, r,  = 0 implies that the probabilities at long times for 
the moving particle to be back at the origin with a velocity parallel or antiparallel to the 
initial one are equal in the case of left- or right-turning collisions only ( y = i). 

However, as soon as there is a non-vanishing transmission probability LY (no 
backscattering, p = 0), the probability for antiparallel velocities is larger ( r l  < 0). The 
behaviour of r2 is as expected. In  y = i  i t  follows from r 2 =  R I I  - R 1 3 - 2 R 1 2 =  
2 ( R I 3 - R l 2 ) < O  that the probability at large times to be back at the origin with a 
velocity perpendicular to the initial one, is larger than with a parallel one. 

I n  general, the analytic contribution from r l  in ( 8 . 5 )  (with O <  y <$ and p = 0) to 
the slope of cD( c )  in ( 8 . 6 )  at small c is always very small. Numerically the contributions 
from rl  to c D ( c )  (with 0 < y < 4 and p = 0) are negligible for all densities and in figure 
2 the E M A  diffusion coefficient cannot be distinguished from the Boltzmann value. In  
figure 3 ( a )  we have plotted the relative deviations of the  E M A  results from the Boltzmann 
results for some cases without reflections. 

Also  for the models with reflection the EMA result resembles a straight line in the 
plot of c D ( c )  against c (figure 2 ) ,  although this straight line is not described by the 
Boltzmann expression ( 4 . 5 ) .  If we linearly interpolate between the E M A  value of c D ( c )  
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Figure 3. Relative deviations of EMA from linear behaviour for some typical models: ( a )  
withour backscattering ( p  = 0). relative to Boltzmann; ( b )  with backscattering ( p  f O), 
relative to linear interpolation ( D , )  between c = 0 and c = 1. Here, y is kept fixed at the 
value v=O. l .  

at  c = O  (see end of 9 7 and table 1) and the exact value of c D ( c )  at c = 1, then the 
relative deviation between E M A  and linear interpolation is again small, as can be seen 
in figure 3(6) for some cases. For figure 3( 6)  we arbitrarily set the deflection probability 
to 1/10, 

Before closing this section we calculate, also for cases without backscattering, the 
eigenvalues ry for the simple ring matrix R" (see end of E) 7 )  at low densities. It follows 
from (8.3) by setting A! = CT/ = 21yc with the result 

It is interesting to compare the eigenvalues ry with the r, for the self-consistent nested 
rings in ( 8 . 4 ) ,  where some additional terms appear. One sees that r l /  ry decreases from 
1 to 0, whereas rz/  r i  increases from 1 to 2 as y increases from 0 to its maximum value 
i. Thus in models with deflection only ( y = i), the contributions from the simple rings 
and the nested rings cancel exactly in the eigenvalue r ,  , relevant for diffusion, but not 
in r z .  

9. Conclusion and discussion 

The kinetic description of lattice Lorentz gases is very different for microdynamic 
collision rules that either forbid or admit backscattering. Only in the first case does 
the Boltzmann equation give the correct diffusion coefficient ( 4 . 5 )  at low densities of 
scatterers, as was first derived by Okamura et a1 [SI. In fact, it gives a very good 
representation of D( c )  for all densities in models without backscattering. The contribu- 
tions from all types of ring collisions are extremely small (less than lo/'). In models 
with backscattering ( p  # O), the Boltzmann diffusion coefficient ( 4 . 5 )  at low and 
intermediate densities is quantitatively different from the actual D value. The 
Boltzmann equation fails not only in two dimensions, but for all values of d,  as follows 
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from the phase space estimates of 0 1 .  The reason is the discrete phase space. In 
comparison with a continuous Lorentz gas, the small set of allowed velocities in the 
lattice version gives a n  extremely large relative weight to reflected velocities. This 
introduces into d-dimensional lattice gases certain pathological features of continuous 
one-dimensional systems, where the Boltzmann equation also fails at low densities 
126, 123. 

For the square lattice we have performed explicit calculations of the diffusion 
coefficient by a self-consistent resummation of all ring and repeated ring sequences. 
This resummation is equivalent to an  effective medium theory. 

The diffusion coefficient, obtained from analytical and  numerical solutions of the 
effective medium equations (see figure 2) ,  shows excellent agreement with the results 
from computer simulations, both for models with and  without backscattering. In the 
latter case, D( c) is approximately equal to the Boltzmann value (4 .5) .  Similar results 
were found in the Lorentz model of [6] with mirrors and no backscattering. 

The agreement between E M A  and simulations does not only occur at low and high 
densities, as expected (see $0 7 and 8), but, surprisingly, also at intermediate densities. 
These findings are in line with excellent predictions of effective medium theory for 
diffusion coefficients in hopping models on a square lattice with bond disorder [24,15]. 
We also expect that simulations performed on the backscattering models of Gunn and  
Ortuiio [ I 1 1  will agree with the predictions (7 .2)-(7.4)  for the diffusion coefficient, at  
least at low densities. 

Notwithstanding the excellent agreement between diffusion coefficients from com- 
puter simulations and our effective medium theory, the values at small densities are 
by no means exact. Consider first Lorentz gases with backscattering. The E M A  diffusion 
coefficient c D = ( 1 + r , . r , ) / ( 2 . r I )  with r ,  from (7 .3) ,  (7.4) may not represent the exact 
value of cD(c)  as c+O. In fact, all tree-like collision trajectories (as nested and  
repeated rings in figure l),  in which the branches are retraced a n  arbitrary number of 
times, are proportional to ( c t ) k  - C(1) for t + a3 and c + 0, similar to those in figure 1. 
For the one-dimensional continuous Lorentz gas with stochastic collision rules these 
collision trajectories can be resummed using a transfer matrix method [27]. However, 
it is not clear how this analysis can be extended to the two-dimensional case and  how 
the exact value of cD(c)  at c = O+ for models with reflections can be determined. 

Next consider Lorentz gases without backscattering. Here the Boltzmann diffusion 
coefficient does indeed represent the dominant low-density behaviour. However, the 
expression for D ( c )  in (8.6) does not include all contributions of relative 6 ( c ) .  The 
orbiting collision events of figure 1 are non-ring-type events, missing in effective medium 
theory. A separate calculation is required, but we have not yet carried this out. Their 
contributions are expected to be very small in our stochastic Lorentz model, because 
the probability of retracing the same closed orbit decreases exponentially with time 
(as opposed to periodic orbits in a deterministic Lorentz gas [5 ,6]) .  

Finally we point out that the E M A  equation (5 .8)  is rather similar, but not equivalent 
to a self-consistent resummation of nested rings or  of (nested) repeated rings, where 
T' in (5.8) is replaced respectively by T N  or T R R ,  defined as 

T N  = T +  TRT 

T R R  = T +  TRTRR.  (9.1) 

For models without backscattering, these methods (standardly used in kinetic theory) 
are equivalent to EMA at low and  high densities of scatterers. For models with backscat- 
tering, this is only the case for high densities (the region of random walks with 
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impurities). At low densities, only the second method (repeated rings) yields dominant 
behaviour which agrees with E M A .  The expression for the ring integral, given in [l], 
should be replaced (for low densities with backscattering) by 

R ( z ) =  {(1+z)ei4"-1 - c T [ ~ - R ( z ) T ] - ' } - ' .  I, 
The details given in [ l ]  nevertheless remain valid, as they are in fact obtained using 
this representation. 

In  a forthcoming paper we will analyse the relations between ring, repeated ring 
and effective medium approximation in more detail. 

The implications of backscattering on transport properties in CA fluids have been 
discussed in [ 11, where also further simulations have been suggested. 
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Appendix 1 

In this appendix we present the definitions and some properties of cubic symmetric 
matrices and their eigenvectors. Important simplifications come from the fact that all 
matrices have cubic symmetry. Consider the set of 2d-vectors: 

11) = ( l ,  1 , l )  . . . )  1 , l )  

IV,)= V y ~ l ) = ( l , O , .  . . , 0, - l , O , .  . . , O )  

I V , ) = V , ~ l ) = ( O , l , O  , . . . )  o,o, - l , o  , . . . ,  0) 

/V,)= V,11)=(0,. . . , 1 , 0 ,  * .  . ,o; -1) 

p:,= v : l l ) = ( l , o , . *  . )  O , l ,  0 , .  . . , O )  

p i ,= V',Il)=(O, * , , ,o, 

1+0)= I$d= 11) 

1 , 0 ,  0 , .  . . , 1) .  

Then, a biorthonormal basis I+,,), I$,,) ( / = O ,  1 ,2)  is defined through 

( A l . l )  

(A1.2) 



Lattice Lorentz gas 4629 

satisfying ( $ , s a . l $ , a )  = SI,&a., where an inner product is defined in (2.10). The complete- 
ness of the 2d basis can be expressed in terms of projectors Po+ P, + P2 = 1, where 

Po=Il)(1l 

(A1.3) 

We further observe that any 2d x 2d matrix K possessing cubic symmetry and having 
constant coefficients (no dependence on (reciprocal) lattice vectors n or q )  has 
necessarily the same form as W i n  (2.3) with a, /3 and y replaced by arbitrary numbers 
a, b and c without the constraint (2.2). One easily verifies that any cubic symmetric 
matrix K has only three different eigenvalues k, ( I  = 0, 1, 2) and 2d-eigenvectors: 

KIcL/a) = h l $ / a )  
k, = a + b + 2( d - 1)c 

k , = a - b  
(A1.4) 

k2 = a + b - 2c 

where I = 0 refers to the scalar Il), I = 1 to the vector 1 V,) (d-fold degenerate) and I = 2 
to the tensor IdVt - 1) ( ( d  - 1)-fold degenerate). Its spectral representation is 

K =  koPo+klPl+k2P>. (A1.5) 

Appendix 2 

Here we give a detailed calculation of the eigenvalues of the ring matrix that occur in 
the effective medium equation (5.8). We write 

r / =  (61~lRl41,) =(&,lRl$/,) = 1 ( ~ I ~ I A , )  (A2.1) 

where IA,) satisfies (6.5). Using the spectral representation (A1.5) of -cT' with A o =  0 
(see below (6.2a)), this equation can be written as 

(A2.2) 

As already menti?ned, we restrict ourselves to the two-dimensional case; the eigenvec- 
tors are \ $ l a ) = \ + l a ) = f i \ V a )  ( a = x , y )  and I$2)=1$2)=)Vt-Vf)  and PI ( / = 1 , 2 )  is 
a projection operator on the eigenspace spanned by 14,) ( I =  1,2).  The required 
functions ($ /x lAix)  are contained in the components of P, lAIx) ( I ' =  1,2)  for which a 
closed set of linear equations can be obtained. Multiplying (A2.2) by (( 1 + z )  elqv - 1)-' 
and applying PI and P2, respectively, yields the closed set of equations. With the 
definition 

Y 

{ e ' " "  - 1 + A l p 1  + A,P2)/A,) = I$/,). 

B/u, /a=t lZ ,n l ( ( l+Z)  e 'qv-l) - l l$~a)  
one arrives at three coupled equations: 

+ ~ l ~ l u , , p  ~ 2 ~ 1 0 . 2  ) ( ( G l p ( A i ) )  = (:;;;;) 
A l B ? , l p  1 + A 4 2 2  ( $ 2 1 4 )  
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where a, p are equal to x or y .  The matrix elements can be evaluated from (2.2) and 
(2.3), yielding 

where sa = sin qa and c, = cos 4,. We thus obtain for the eigenvalues: 

(A2.4) 

where the integrand has been symmetrised with respect to qx and qr, and A/, B,, E 
and F are given by (6.7). Observing that 8ff; = (1  + c . ~ ) / (  1 - c,), the q,-integration is 
carried out. We use that 7r- l  5,“ d x ( a  + bc,)-’ = ( a 2 -  b2)-”’ for a’> b2; this, and other 
integrals needed in the following, are found in [28]. For E > F we then have 

(A2.5) 

where A = A/, B = BI and 6’= F/( E - F ) .  The remaining integral has the form 1; dx (1  - c,)”? 
7r [ ( l+6’)(1 -62)-’-c.x][l+2”x]1~’ 1 * ( 6 )  = (A2.6) 

and  reduces to an elementary integral through the subsequent substitutions 1 - c, = 
2 sin’ cp, cos q = z, (1 + 62)”2z  = t and t = sin 9. This yields 

(A2.7) 

with tan cL0 = 6-I and K 2  = (1 - a4)- ’ .  With the help of [28] the result can be shown 
to be 

2 
I+(  6 )  = - tan-’ f [ ~ ’  - 61. 

71 
(A2.8) 

For E < F one has to be more careful. Define for this case v 2  = F/( F - E)  (=  -6 ’ ) .  
From a z-dependent analysis analogous to (A2.1)-(A2.4), yielding nine coefficients 
instead of the six coefficients A/, B,, E and F in (6.7), we can show that Im 7 > 0 for 
z = + i ~ .  The equivalent of (A2.5) is then 

A - 2 B  ( B E - A F )  
E - 2 F  ( E  - 2 F ) F  r , ( A , , A , ) = -  + v ( i + I - ( v ) )  

with 

Using substitutions 1 - c, = 2sin’ cp, cos cp = z, z = (7’- 1)”’y and  y = sinh t :  

(A2.9) 

(A2.10) 

(A2.11) 
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with yo = (7’- tanh to = 7-l and K 2  = ( 74 - l)-’. The first integral yields 
7r-’ ln (7  + 1) / (7  - 1); the second can be written in the form dx(a  -cosh x)-I with 
x = 24 and then gives 7r-’ In( 7 + 1)/( 1 - 7). As Im 7 > 0, the result for I - (  7) is 

(A2.12) 

The imaginary term cancels the other imaginary term in (A2.9). Note that these terms 
would also cancel if Im 7 <O.  So, finally, the general result can be written as 

(A2.13) 

with 

) for S ’ > O  
2 

(A2.14) 
2 T + l  
- 7 h -  for 62= -7*<0, 
7r 7 - 1  

In fact, the first line of this equation leads to the second line if we consider its analytical 
continuation for 6 = -iv, and vice versa. In two special cases the eigenvalues become 
particularly simple: for E = 2 F  one has 

and for E + F o n e h a s  J = 4 / 7 r a n d  

(A2.15) 

(A2.16) 
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